Великаны в мире минералов: многослойные представители группы канкринита

Р.К.Расцветаева¹, С.М.Аксёнов¹

¹Институт кристаллографии имени А.В.Шубникова РАН (Москва, Россия)

Минералы группы канкринита — алюмосиликаты, имеющие много общих черт с цеолитами. В их структурах из Si- и Al-тетраэдров, объединенных в шестичленные кольца, содержатся полости, занятые катионами Na, K, Ca, анионами Cl, F, анионными группировками SO₄, SO₃, Sn, PO₄, CO₃, C₂O₄, CO₂ и молекулами воды. Минералы группы активно изучаются в связи с их адсорбционными и ионообменными свойствами. Найденные в соединениях со структурным типом канкринита корреляции химического состава и строения алюмокремнекислородного каркаса могут быть полезны при направленном синтезе цеолитоподобных соединений. Группа канкринита на сегодняшний день включает около 30 минералов, в которых параметр ячейки *с* изменяется от ~5 до 95 Å, что соответствует количеству слоев от двух в канкрините до 36 в кирхерите. 20 минералов этой группы — многослойные. В статье рассматриваются их кристаллохимические и генетические особенности.

Ключевые слова: группа канкринита, многослойный минерал, структура, пустоты каркаса.

инералы группы канкринита — алюмосиликаты, имеющие много общих черт с цеолитами. В их структурах из Si- и Al-тетраэдров, объединенных в шестичленные кольца, содержатся полости, занятые катионами Na, K, Ca, анионами Cl, F, анионными группировками SO_4 , SO_3 , Sn, PO_4 , CO_3 , C_2O_4 , CO_2 и молекулами воды [1-3]. Разнообразие членов этой группы связано не только с их разным химическим составом, но и с весьма существенными структурными различиями.

Как устроены канкриниты

Каркас этих минералов представляет собой укладку вдоль оси *с* плоских шестерных колец из чередующихся AlO₄- и SiO₄-тетраэдров. Кольца, расположенные

Рамиза Кераровна Расцветаева, доктор геолого-минералогических наук, главный научный сотрудник Института кристаллографии имени А.В.Шубникова РАН, соавтор открытий более 80 минералов. Область научных интересов структурная минералогия, кристаллохимия, рентгеноструктурный анализ. Постоянный автор «Природы». e-mail: rast.crys@gmail.com

Сергей Михайлович Аксёнов, кандидат геолого-минералогических наук, научный сотрудник того же института. Специалист в области кристаллохимии и рентгеноструктурного анализа. Неоднократно публиковался в «Природе». e-mail: aks.crys@gmail.com

послойно на одном уровне, изолированы друг от друга и объединены с ниже- и вышележащими через вершины тетраэдров. Шестичленные кольца вокруг осей $[1/3 \ 2/3 \ z]$, $[2/3 \ 1/3 \ z]$ и [00z] принято обозначать буквами *A*, *B* и *C* соответственно, а расположенные на разных уровнях слои обозначаются теми же буквами.

К двуслойным относится возглавляющий группу канкринит, названный в честь графа Е.Ф.Канкрина — министра финансов России.

Поскольку в структуре канкринита слои сформированы только кольцами *A* и *B*, а вокруг третьей оси [00*z*] нет кольца, то вдоль нее образуется широкий канал, занятый атомами Na и расположенными по центру CO₃-группами разной ориентации.

Таким образом, двухслойные минералы (собственно канкринит и его аналоги — природные и синтетические) характеризуются чередованием слоев из двух букв *ABAB*. Эти минералы отличаются вариациями состава. Среди них есть и виды, открытые при нашем участии: канкрисилит Na₇(Al₅Si₇O₂₄)(CO₃)·3H₂O [4] и гидроксиканкринит Na₈(Al₆Si₆O₂₄)(OH)₂·2H₂O [5]. Наибольшее содержание кремния обнаружено нами в канкрисилите, где он составляет 60% от общего числа тетраэдрических катионов, что мы и отразили в названии.

При переходе к многослойным минералам буквы *A* и *B* дополняются третьей буквой — *C*. Последовательность укладки слоев *A*, *B* и *C* приводит к большому разнообразию каркасных построек, формирующих серию с возрастающим пара-

Двухслойная структура канкринита с широким каналом.

Схема распределения шестичленных кремнекислородных колец вокруг осей гексагональной ячейки [1].

метром ячейки $c \approx 5n$ Å (n = 1-19) [3]. При этом в каркасе образуются боковые вторичные кольца — параллельные оси шестерные и наклонные четверные.

Рентгеноструктурные исследования многослойных канкринитоподобных минералов затруднены из-за того, что они образуют недостаточно качественные монокристаллы. В них часто присутствуют сростки, двойники, ошибки в чередовании слоев из шестерных тетраэдрических колец. На дифракционной картине этих минералов нередко наблюдается диффузный характер рефлексов вдоль оси с* обратной решетки. Кроме того, природные минералы группы канкринита имеют непростой состав, а статистическое заполнение каналов и пустот также осложняет изучение катионного и анионного распределения в их структурах. И неудивительно, что двухслойные канкриниты изучены детально, а многослойные — в гораздо меньшей степени.

Кирпичи и кирпичики

Количество слоев и последовательность их укладки определяют форму и размеры пустот алюмосиликатного тетраэдрического каркаса в минералах группы канкринита. Как это принято для цеолитов, форму пустот и каналов можно представить в виде многогранников, соединив прямыми линиями центры Si- и Al-тетраэдров. Типичные для канкринита пустоты имеют форму гексагональных кубооктаэдров высотой ~5.2 Å, ограниченных пятью шестичленными и шестью четырехчленными кольцами. Расстояние между соседними слоями шестичленных колец 2.5 Å. В канкринитоподобных минералах широкий канал отсутствует, а наряду с канкринитовыми формируются и более крупные пустоты.

Пустоты в каркасе одинаковые по ширине, но разные по высоте: от минимальной 5 Å до максимальной 22.5 Å. Их можно рассматривать в качестве строительных блоков — своеобразных кирпичей и кирпичиков, которые имеют свои названия в соответствии с минералом, в чьей структуре они впервые были найдены. В литературе описываются пять типов таких пустот: канкринитовая (К), содалитовая (S), быстритовая, или лосодовая (B), лиоттитовая (L) и джузеппеттитовая (G). Канкринитовая полость сверху и снизу ограничена двумя плоскими шестерными кольцами, а с боков — шестью четверными и тремя ломаными шестерными [4⁶6⁵]. В остальных пустотах к ним добавляется по три шестичленных кольца по сравнению с предыдущей. Таким образом, в содалитовой пустоте (кубооктадре) присутствуют восемь шестичленных колец [4⁶6⁸]. Быстритовая, или лосодовая, полость построена шестью четверными, тремя ломаными и восемью плоскими шестерными кольцами [4⁶6¹¹]. Такая пустота впервые была найдена в структуре синтетического соединения лосод, а затем в минерале быстрите, и потому она имеет два названия. Лиоттитовая пустота [4⁶6¹⁷] состоит из 17 шестичленных колец. Впервые она была определена в лиоттите. Джузеппеттитовая пустота [4⁶6²³] содержит 23 шестичленных кольца и впервые обнаружена в структуре минерала джузеппеттита.

Однако есть еще три безымянные пустоты (см. рисунок внизу *г*, *е*, *з*), которые до недавнего времени не были известны, и в минералах их пока не обнаружили. Мы обратили внимание на то, что между содалитовой и лиоттитовой пустотами, а также между лиоттитовой и джузеппеттитовой не хватает промежуточных по высоте членов. Квантово-химическими и топологическими расчетами мы получили эти три пустоты [4⁶6¹⁴], [4⁶6²⁰] и [4⁶6²⁶]. Они как раз и восполнили пробелы, а последняя превзошла по размеру самую большую джузеппеттитовую.

Пустоты, найденные в минералах, комбинируясь, выстраиваются в колонки вокруг осей ячейки, а колонки, соединяясь, образуют пористые каркасы различных типов. Из таких кирпичиков и их комбинаций можно собрать разнообразные пост-

Формы и размеры пустот в тетраздрических алюмокремнекислородных каркасах минералов группы канкринита: *a* — [4665] канкринитовая, *б* — [4⁶6⁸] содалитовая, *в* — [4⁶6¹¹] быстритовая (лосодовая), *г* — [4⁶6¹⁴] ?, *д* — [4⁶6¹⁷] лиоттитовая, *е* — [4⁶6²⁰] ?, *ж* — [4⁶6²³] джузеппеттитовая, *з* — [4⁶6²⁶] ?. Вопросительными знаками отмечены гипотетические полости.

ройки высотой от ~5 до ~95 Å. Тип каркаса зависит от содержащихся в нем пустот и их чередования в колонках. И совсем не обязательно, что в наиболее высоких постройках участвуют самые большие кирпичи. Размер постройки не может быть меньше самого большого из входящих в нее кирпичей. Кроме того, она может быть любого размера, если «строится» из мелких кирпичиков, даже без участия крупных.

Из чего состоят кирпичи

Все минералы этой группы характеризуются заполнением крупных пустот сульфатными, карбонатными и другими анионами совместно с атомами Na и молекулами воды. Содалитовая пустота вмещает одну SO₄-группу, лосодовая — две, лиоттитовая — три, джузеппеттитовая — четыре. Эта анионная группа не может войти в самую маленькую канкринитовую полость, которая содержит анионы F и Cl, а также молекулы воды. С другой стороны, набор пустот в разных канкринитоподобных минералах индивидуален, а значит, и количество SO₄-ионов они содержат разное.

Формулы конкретных видов различаются отношениями Si:Al и Na:K:Ca и переменным количеством воды, Cl и анионных групп. Отношение Si:Al меняется в небольших пределах. Преобладание Al над Si отмечается лишь в джузеппеттите. Во всех минералах (за редким исключением) главный (а иногда и единственный) катион в пустотах и каналах каркаса — Na. Вторым по содержанию часто выступает Ca.

Форма и размеры пустот влияют на сорбционные свойства канкринитоподобных минералов. Особенность их строения — ограничение каналов шестичленными тетраэдрическими кольцами, что затрудняет миграцию крупных катионов через окна размером 3 Å (в отличие от цеолитов, в которых таких ограничений нет). Поэтому обменные процессы в этих минералах идут лишь с замещением средних по размеру катионов такими же или более мелкими. В последнем случае наблюдается деформация и сжатие решетки, как это зафиксировано в лосоде.

Многослойные канкриниты

Можно предположить существование множества канкринитоподобных соединений с разным количеством слоев и их чередованием. Даже в соединениях с одной и той же ячейкой при одинаковом количестве слоев могут реализоваться различные варианты последовательности их чередования в постройке. Мы рассмотрим строение и состав всех известных многослойных канкринитоподобных минералов с количеством слоев от 4 до 36 (табл.).

4-слойные. Минимальное количество слоев имеют быстрит и его формульные аналоги — карбобыстрит и сульфгидрилбыстрит, а также синтетическое соединение лосод.

Эти минералы (как и лосод) обладают идентичным по топологии каркасом с последовательностью чередования слоев *ABAC*. Кольца обрамляют два типа пустот — канкринитовую и быстритовую, которые различаются составом внутрикаркасных катионов и анионов. Колонки вокруг оси [00z] составлены из канкринитовых полостей, при этом каждое второе звено колонки повернуто на 60°. Колонки вокруг осей $[1/3 \ 2/3 \ z]$ и $[2/3 \ 1/3 \ z]$ состоят из более крупных по объему быстритовых (лосодовых) пустот.

Быстрит — очень редкий минерал, найденный на Мало-Быстринском месторождении вблизи Байкала. Атомы Са в его структуре находятся в центре шестичленных колец, а крупные анионы Cl занимают позиции в середине канкринитовых полостей, становясь общими вершинами для соседних Са-полиэдров и образуя цепочки -Ca-Cl-Ca-Cl-. Группировки из атомов серы располагаются в более крупных быстритовых пустотах [6].

Карбобыстрит нашел А.П.Хомяков в Хибинском щелочном массиве, в пегматитовой жиле горы Коашва [7]. В канкринитовых полостях цепочки имеют состав -Na-H₂O-Na-H₂O-, а в быстритовых вместо S²⁻ содержатся CO₃²⁻ и H₂O.

Сульфгидрилбыстрит недавно обнаружили также на Мало-Быстринском месторождении в виде уплощенных, прозрачных, от желтого до оранжевого цвета кристаллов размером до 5 мм в длину, в ассоциации с лазуритом, кальцитом, диопсидом, флогопитом и пиритом [8]. Однако в канкринитовых полостях у него находятся Са и (SH)⁻, которые образуют цепочки -Ca-SH-Ca-SH-. В быстритовых пустотах обнаружен пентасульфидный кластер (S₅)²⁻, формирующий цепочку из атомов серы вдоль [001] с расстояниями S–S 1.73–2.09 и 1.89–1.95 Å.

Лосод впервые был синтезирован У.Зибером [9], назван он по низконатриевому составу (low sodium). В лосодовой, или быстритовой, пустоте у него находятся атомы натрия. Зибер с соавторами считают, что замещение Na еще более мелкими ионами Ag приводит к заметному уменьшению параметров ячейки. В Li-форме лосода сжатие по оси *a* достигает 4%, по оси *c* — 5%, а уменьшение общего объема пустот составляет 12.5% при значениях *a* = 12.39 и *c* = 10.03 Å вместо *a* = 12.906 и *c* = 10.541 Å в лосоде [9].

Табли	ца
-------	----

Минералы группы канкринита с многослойными структурами

Минерал*	Параметры ячейки, Å	Симметрия	Ссылки
Быстрит (Na.K);Ca[Al ₆ Si ₆ O ₂₄](S ₃); ₅ Cl	a = 12.855(6), c = 10.691(1)	P31c	[6]
Карбобыстрит Na ₈ [Al ₆ Si ₆ O ₂₄](CO ₃)-4H ₂ O	<i>a</i> = 12.6678, <i>c</i> = 10.3401	P31c	[7]
Сульфгидрилбыстрит Na ₅ K ₂ Ca[Si ₆ Al ₆ O ₂₄](S ₅) ²⁻ (SH)	a = 12.9567(6), c = 10.7711(5)	P31c	[8]
Лосод (синтетический) Na ₁₂ Al ₁₂ Si ₁₂ O ₄₈ ·18H ₂ O	a = 12.906(3), c = 10.541(3)	P63/mmc	[9]
Лиоттит	a = 12.842(3), c = 16.091(5)	P-6m2	[10]
Афганит из Прибайкалья Na ₂₂ Ca _{9.8} [Si ₂₄ Al ₂₄ O ₉₆][(SO ₄) _{5.3} CO ₃ Cl ₂ (H ₂ O) ₄]	a = 12.761(4), c = 21.416(7)	P6₃mc	[1, 11]
Афганит из Питильяно (Na,K) ₂₂ Ca ₁₀ [Si ₂₄ Al ₂₄ O ₉₆](SO ₄) ₆ Cl ₆	a = 12.8013(7), c = 21.412(2)	P6₃mc	[12]
Аллориит Na ₅ K _{1.5} Ca(Si ₆ Al ₆ O ₂₄)(SO ₄)(OH) _{0.5} ·H ₂ O	a = 12.892(3), c = 21.340(5)	P31c	[13, 14]
Францинит Na _{21.5} (Ca,K) _{8.6} Ca _{9.9} [Si ₃₀ Al ₃₀ O ₁₂₀](SO ₄) ₁₀ ·2H ₂ O	<i>a</i> = 12.916(1), <i>c</i> = 26.543(3)	P321	[15, 16]
Францинит-диморф (Na,Ca) ₂₄ K ₁₀ [(Si,AI) ₆₀ O ₁₂₀](SO ₄) _{5.6} Cl _{1.5} (CO ₃) _{0.4} ·11H ₂ O	<i>a</i> = 12.847(2), <i>c</i> = 26.461(3)	P3	[17]
Маринеллит (Na,K) ₄₂ Ca ₆ [Si ₆ Al ₆ O ₂₄] ₆ (SO ₄) ₆ Cl ₂ ·6H ₂ O	<i>a</i> = 12.880(2), <i>c</i> = 31.761(6)	Р31с или <i>P-</i> 62с	[21]
Тункит [Na,Ca,K) ₈ [Al ₆ Si ₆ O ₂₄](SO ₄) ₂ Cl·H ₂ O	a = 12.843(3), c = 32.239(8)	P6222	[19]
Тункит-диморф [Si ₃₆ Al ₃₆ O ₁₄₄][(Na _{31.1} Ca _{3.94} K _{0.96})(SO ₄) _{9.3} (SO ₃) _{0.7}][Ca ₁₂ Cl ₈]	<i>a</i> = 12.755(3), <i>c</i> = 32.218(5)	P3	[20]
Фарнезиит [(Na,K) ₄₆ Ca ₁₀](Si ₄₂ Al ₄₂ O ₁₆₈)(SO ₄) ₁₂ ·6H ₂ O	a = 12.8784(2), c = 37.0078(12)	P6₃/m	[22]
Джузеппеттит (Na ₄₂ K ₁₆ Ca ₆)[Si ₄₈ Al ₄₈ O ₁₉₂](SO ₄) ₁₀ Cl ₂ ·5H ₂ O	<i>a</i> = 12.856(2), <i>c</i> = 42.256(8)	P31c	[18, 23]
18-слойная фаза (Na,K,Ca) ₇₂ (Si ₅₄ Al ₅₄ O ₂₁₆)(SO ₄) ₁₆ (Cl,H ₂ O) ₈	a = 12.904(2), c = 47.802(4)	P3	[24]
?	<i>c</i> ~ 53	?	
?	<i>c</i> ~ 58	?	
?	<i>c</i> ~ 64	?	
?	<i>c</i> ~ 69	?	
Сакрофанит Na ₆₁ K ₁₉ Ca ₃₂)(Si ₈₄ Al ₈₄ O ₃₃₆)(SO ₄) ₂₆ Cl ₂ F ₆ ·2H ₂ O	<i>a</i> = 12.903(2), <i>c</i> = 74.284(8)	P-62c	[25, 26]
Бьякеллаит (Na,Ca,K) ₈ [Al ₆ Si ₆ O ₂₄](SO ₄) ₂ (OH) _{0.5} ·H ₂ O	<i>a</i> = 12.913(1), <i>c</i> = 79.605(5)	P3	[27, 28]
?	<i>c</i> ~ 85	?	
Фантаппиит Na _{82.5} Ca ₃₃ K _{16.5} [Si ₉₉ AI ₉₉ O ₃₉₆](SO ₄) ₃₃ ·6H ₂ O	a = 12.8742(6), c = 87.215(3)	P-3	[29]
?		<i>c</i> ~ 90	?
Кирхерит Na ₅ Ca ₂ K[Al ₆ Si ₆ O ₂₄](SO ₄) ₂ ·0.33H ₂ O	<i>a</i> = 12.8770(7), <i>c</i> = 95.244(6)	R32	[30]

* Минералы расположены в порядке возрастания параметра с.

6-слойные. К ним относится пока только один лиоттит, который нашли в туфовых породах близ г.Питильяно (Тоскана, Италия) и назвали в честь Л.Лиотти — итальянского коллекционера минералов. Лиоттит встречается в виде прозрачных бесцветных уплощенных гексагональных призм до 1 см в диаметре. Последовательность слоев в его каркасе АСВСВС [10] образует четыре канкринитовые, одну лосодовую и одну лиоттитовую пустоты. Последняя впервые была обнаружена именно в этом минерале. Колонки вокруг оси [00z] составлены из канкринитовых полостей (второе и третье звено повернуты на 60°), которые содержат атомы Са, а в центре полости располагается молекула Cl. Лиоттитовая пустота содержит три SO₄-группы. Одна из них имеет две ориентации вдоль оси третьего порядка.

8-слойные минералы характеризуются восьмичленной последовательностью *ABABACAC* с повторением обеих пар символов. Данная последовательность обусловливает наличие шести канкринитовых и двух лиоттитовых пустот. Колонки из канкринитовых полостей образуются вокруг оси [00*z*]. Канкринитовая и лиоттитовая полости чередуются вокруг двух других осей. Афганит впервые найден в месторождении Сар-э-Санг (Афганистан), но мы изучали образец из Прибайкалья [11]. Там афганит распространен в лазуритовых месторождениях и представляет собой продукт замещения лазурита в постмагматическую стадию.

Каналы вокруг оси [00z] в канкринитовой полости афганита заняты атомами Са, которые центрируют шестичленные кольца и формируют 8-вершинники с участием Cl и молекул H₂O, находящихся в центральной части пустоты. Са и Cl образуют внутри канала цепочки -Ca-Cl-Ca-H₂O-. В колонках вокруг осей 3-го порядка Са находится в торцах канкринитовой пустоты, также образуя 8-вершинники с участием H₂O в центре полости [Са₄(H₂O)₂]. В крупных лиоттитовых пустотах располагаются нанизанные на оси анионные группировки SO₄ и CO₃. Тетраэдры серы развернуты в противоположные стороны, а центральный тетраэдр характеризуется наибольшей подвижностью и статистически замещается СО₃-группой. Вокруг осей в лиоттитовой пустоте располагаются атомы Na с координационными числами от 5 до 8. Они разупорядочены, их позиции расщеплены и час-

Положение колонок вокруг осей ячейки в структуре афганита.

тично заселены (или замещены) Са, координация которого возрастает до 9.

Еще один образец афганита из туфовых пород Питильяно исследовали П.Баллирано с коллегами [12]. В каркасе минерала Si- и Al-тетраэдры упорядочены, а колонки из канкринитовых полостей заполнены Ca и Cl, образующих цепочку -Ca-Cl-Ca-Cl-. Канкринитовая полость второй колонки, в отличие от афганита из Прибайкалья, имеет состав [Ca₄Cl₂], а в лиоттитовой пустоте найдены только сульфатные группы в окружении атомов Na и K в расщепленных позициях [12].

Аллориит — высоконатриевый водный минерал, найденный в вулканических породах горы Монте-Каваллуччио, расположенной в кальдере вулкана Сакрофано (Лацио, Италия). Аллорит встречается в виде бесцветных и бледно-фиолетовых кристаллов размером до 1.5×2 мм. Мы исследовали этот минерал и назвали его в честь известного итальянского минералога-любителя и коллекционера Р.Аллори, который внес значительный вклад в изучение вулканогенных комплексов региона Лацио [13, 14].

Каркас, аналогичный афганитовому, характеризуется составом (Si_{6.65}Al_{5.35}O₂₄) с упорядоченным распределением кремния и алюминия. Лиоттитовая пустота вмещает до трех групп SO₄, которые статистически замещены карбонатными и SO₃-группами разупорядоченной ориентации. Каналы вокруг оси [00z] образованы канкринитовыми полостями, в которых (как и в афганите) формируются цепочки, но другие — -Na-H₂O-Na-H₂O-.

Таким образом, три минерала с 8-слойной упаковкой отличаются друг от друга заполнением пустот в каналах.

10-слойные. Подобными структурами обладают францинит и его структурный аналог.

Францинит в виде бесцветных прозрачных кристаллов также обнаружен в туфовых породах близ Питильяно и назван не в честь Франции, а в честь М.Францини — итальянского минералога из Уни-

Заполнение пустот — лиоттитовой и канкринитовой — в структуре аллориита.

Заполнение канкринитовых полостей в колонках структуры афганита (*a*) и аллориита (*б*). *W* — молекула воды.

верситета Пизы [15]. В структуре минерала последовательность слоев *ABCABACABCAB* образует набор близких по размеру пустот: вдоль оси [00*z*] чередуются две содалитовые и две канкринитовые полости, а вдоль двух других осей — две содалитовые и одна быстритовая.

Пустоты заполнены Na, Ca, K, SO₄ и H₂O, распределенными по расщепленным позициям с неполной и смешанной заселенностью. В канкринитовой полости располагаются молекулы воды, статистически занимающие три позиции вокруг оси и формирующие цепочки -Na-H₂O-Na-H₂O-. Содалитовые пустоты содержат по одной сульфатной группе, разупорядоченной так, что атомы серы сместились с оси 3-го порядка. В быстритовой пустоте находятся две SO₄-группы [16].

Распределение колонок вокруг осей в структуре францинита (слева) и диморфа францинита (справа).

Диморф францинита мы изучали на образце также из кальдеры вулкана Сакрофано [17].

Новый представитель группы характеризуется (как и францинит) 10-слойной упаковкой шестичленных колец, но с иной последовательностью укладки — ACACBCBCBCBC. В результате колонки вдоль оси [00*z*] оказались заполненными только канкринитовыми полостями, попарно развернутыми вокруг оси *z*. В каркасе также присутствуют две крупные пустоты — лиоттитовая и джузеппеттитовая, которые вдоль оси [2/3 1/3 *z*] чередуются с двумя канкринитовыми полостями, а вдоль оси [1/3 2/3 *z*] — с одной канкринитовой. Джузеппеттитовая полость впервые была обнаружена в структуре 16-слойного минерала джузеппеттита [18], а затем найдена и в данном минерале.

В противоположность франциниту, в каркасе его аналога рентгеноструктурным анализом установлена неупорядоченность атомов Si и Al по тетраэдрическим позициям, которые заселены частично с расщеплением и статистическим заполнением. Атомы Ca и Na находятся на осях [00z]вблизи шестичленных колец канкринитовых полостей, в центре которых располагаются молекулы воды с образованием непрерывных цепочек смешанного типа - (Ca,Na)-H₂O- (Ca,Na)-H₂O-. Сульфатные группы заселяют крупные лиоттитовую и джузеппеттитовую пустоты, статистически замещаясь CO₃-группами и атомами Cl. Джузеппеттитовая пустота содержит четыре SO₄-тетраэдра. Лиоттитовые пустоты вдоль оси [2/3 1/3 *z*] чередуются с двумя канкринитовыми полостями, а джузеппеттитовые вдоль оси [1/3 2/3 *z*] — с одной канкринитовой.

Таким образом, исследованный минерал имеет ту же ячейку, что и францинит, но иной состав

Заполнение лиоттитовой полости атомами К, (Na,Ca), SO₄-тетраэдрами и атомами CI (слева) и джузеппеттитовой полости (справа) в структуре диморфа францинита. М — (Na,Ca).

и тип каркаса. Его структура характеризуется набором полостей, контрастных по размеру (наименьшей — канкринитовой и более крупными лиоттитовой и джузеппеттитовой). Новая форма каркаса, неупорядоченность Si- и Al-тетраэдров и внутрикаркасного заполнения, по сравнению с францинитом, могут быть следствием иных условий формирования этого минерала в вулканических комплексах, связанных с быстрым охлаждением лавы.

12-слойные. Сюда относятся тункит, его диморф и маринеллит.

Тункит найден на Мало-Быстринском и Тултуйском лазуритовых месторождениях (Южное Прибайкалье) в виде шестоватых кристаллов бутылочно-зеленого цвета до 1 см в длину, в ассоциации с кальцитом, диопсидом, пиритом и апатитом [19]. Минерал назван по местонахождению вблизи Тункинской долины. По химическому составу тункит сходен с францинитом, но отличается повышенным количеством сульфатной серы и хлора. Генетически тункит близок к афганиту. Однако пространственно они разобщены. Тункит легко замещается флогопитом, поэтому менее распространен, чем афганит. К сожалению, структура тункита не определялась из-за сильной разупорядоченности атомов и диффузного характера рефлексов.

Диморф тункита также найден в лазуритовых породах Тултуйского месторождения в виде шестоватого кристалла голубоватого цвета до 1 см в длину, в ассоциации с кальцитом, диопсидом, афганитом и анизотропным лазуритом. Данные ИК-спектроскопии указывали на существенные структурные различия с собственно тункитом.

Найденная нами укладка слоев *CACACBCBCACB* продуцирует три типа полостей, образующих колонки, которые вокруг оси [00z] составлены только из канкринитовых полостей. Две другие полости вокруг осей $[1/3 \ 2/3 \ z]$ и $[2/3 \ 1/3 \ z]$ характеризуются набором из канкринитовой, быстритовой и лиоттитовой пустот и различаются порядком их чередования [20].

Крупные катионы, анионы и анионные группировки заполняют пустоты всех трех колонок различным образом. В канкринитовых полостях атомы кальция располагаются в центре шестерных колец, а крупные анионы хлора находятся в центрах полостей и образуют цепочки -Ca-Cl-Ca-Cl-.

В шестиугольных основаниях пустот, формирующих колонки вокруг оси [2/3 1/3 *z*], находятся атомы Са. Лиоттитовая пустота содержит три SO₄-группы. Внутри полости располагаются позиции Na и (Na, Ca). В быстритовой пустоте находятся два тетраэдра серы с противоположной ориентацией на оси 3-го порядка, а вокруг оси — позиции Na, (Na, K) и (Na, Ca). В лиоттитовой пустоте вокруг оси $[1/3\ 2/3\ z]$ в шестиугольных основаниях также находятся атомы Ca. Сера статистически имеет координацию по тетраэдру (SO₄) и треугольнику (SO₃). Внутри пустоты располагаются атомы Na. Оба минерала, по-видимому, представляют собой полиморфные модификации.

Кристалл и фрагмент структуры тункита. Вверху — светложелтый тункит с синим лазуритом. Внизу — чередование полостей и их заполнение в колонках вокруг осей [2/3 1/3 *z*] и [1/3 2/3 *z*] в структуре диморфа тункита с формулой [Si₃₆Al₃₆O₁₄₄][(Na_{31.1}Ca_{3.94}K_{0.96})(SO₄)_{9.3}(SO₃)_{0.7}][Ca₁₂Cl₈]. Квадратными скобками выделены составы каркаса и пустот.

Маринеллит найден также близ вулкана Сакрофано, но в долине Бьякелла. Он встречен в виде бесцветных прозрачных кристаллов размером до 1-2 мм, в ассоциации с джузеппеттитом, санидином, нифелином, гаюином, биотитом и кальсилитом [21]. Минерал назван в честь профессора Университета Пизы Г.Маринелли. По химическому составу маринеллит близок к диморфу тункита [20], отличаясь от него более низким содержанием Ca и S и более высоким содержанием К, а также присутствием воды. Главное различие структур этих минералов (и, возможно, собственно тункита) в симметрии и последовательности упаковки слоев, которая в маринеллите описывается как АВСВСВАСВСВС. В его структуре вокруг оси [00z] расположены две лиоттитовые пустоты, а вокруг осей $[1/3 \ 2/3 \ z]$ и [2/3 1/3 z] чередуются содалитовые и канкринитовые полости. Сульфатные группы в лиоттитовой пустоте окружены катионами Na, Ca и K. Содалитовые пустоты заняты атомами Cl и SO₄-группами, а молекулы воды и катионы Na находятся в канкринитовых полостях.

14-, 16-, 18- и 28-слойные. Эти минералы имеют всего по одному представителю.

Фарнезеит обладает четырнадцатислойной структурой. Минерал назван по месту находки в сиенитовых вулканических породах Фарнезе в Италии, в ассоциации с санидином, андрадитом, клинопироксеном, биотитом, оксидами железа и фельдшпатоидами. Встречен он в виде прозрачных бесцветных призматических кристаллов до 0.5 мм в длину.

Последовательность слоев *ABCABABACBACAC* в его структуре формирует вдоль осей $[1/3 \ 2/3 \ z]$ и $[2/3 \ 1/3 \ z]$ колонку из чередующихся лиоттитовой, содалитовой и канкринитовой пустот, а вдоль оси [00z] — двух канкринитовых и одной содалитовой. Лиоттитовая и содалитовая пустоты заполнены сульфатными группами, атомами Na и Ca, а канкринитовая полость — молекулами воды, объединяющими Na- и Ca-полиэдры. Лиоттитовая пустота содержит три SO₄-группы. Центральная из них сильно разупорядочена, как и в содалитовой пустоте [22].

Джузеппеттит принадлежит к 16-слойным минералам. Найден он в вулканических породах в долине Бьякелла и назван в честь Дж.Джузеппетти профессора минералогии в Университете Павиа в Италии [18]. Структура минерала характеризуется последовательностью слоев *АВАВАВАСВАВАВАВС*, которая формирует 10 канкринитовых полостей, четыре содалитовые и две джузеппеттитовые [23]. Вдоль осей [1/3 2/3 *z*] и [2/3 1/3 *z*] канкринитовые и содалитовые полости чередуются в порядке *ККSКККS*, в то время как джузеппеттитовые пустоты чередуются вдоль оси [00*z*].

Сера в джузеппеттитовой пустоте образует четыре тетраэдра, три из которых статистически ориентированы в одну сторону, а четвертый (более упорядоченный) — в противоположную. Атомы

Чередование полостей вокруг осей в структуре джузеппеттита.

Структура фарнезеита.

Пустоты в структуре 18-слойного минерала.

Последовательность чередования пустот в колонках структуры сакрофанита.

натрия окружают все тетраэдры, а в пространстве между ними находятся атомы К. В торцах пустоты располагаются атомы Са.

18-слойный минерал из вулканогенных пород кальдеры Сакрофано пока не получил своего имени. Его структуру изучали на образце из Музея минералогии Университета в Риме [24]. Последовательность слоев ABCABACA-CABABACABC формирует в этом многослойном минерале канкринитовые, быстритовые и лиоттитовые пустоты.

Сакрофанит, структура которого состоит из 28 слоев, назван по месту его находки в вулканических породах кратера Сакрофано. Встречен он в виде бесцветных прозрачных уплощенных гексагональных призм до 2 см в длину [25].

Модель его структуры построена на основе изображения, полученного на электронном микроскопе высокого разрешения, а затем уточнена по дифракционным данным, которые получены на синхротроне [26]. Структура сакрофанита характеризуется 28-слойной последовательностью АВСАВАСАС-АВАСВАСВАСАВАВАСАВС чередования шестичленных колец. Каркас содержит канкринитовые, содалитовые, лосодовые и одну лиоттитовую пустоты, чередующиеся вдоль осей [00z], [1/3 2/3 z] и [2/3 1/3 z]. Химический состав лиоттитовой пустоты очень простой. Она содержит три неупорядоченные сульфатные группы, окруженные атомами Na с частичным замещением Са. Крупные атомы К располагаются между сульфатными группами. Базальные шестичленные кольца центрируются атомами Са. Лосодовые пустоты содержат две SO₄-группы упорядоченной ориентации, которые окружены атомами Na и Ca, а в плоскости между ними находится К. В содалитовых пустотах, как и в других канкринитоподобных минералах, присутствует одна сильно разупорядоченная SO₄-группа в окружении расщепленных позиций Na или Ca. Канкринитовые полости содержат H₂O, или F, или Cl.

Супервеликаны

Минералы с ячейками ~80 Å и больше, с количеством слоев 30, 33 и 36, можно отнести к супервеликанам. Это недавно открытые бьякеллаит, фантаппиит и кирхерит. Бьякеллаит — 30-слойный минерал — один из самых богатых сульфатным компонентом фельдшпатоид. Он найден в вулканических породах долины Бьякелла близ кратера Сакрофано [27]. Здесь наряду с уже описанными нами канкринитоподобными минералами в обломке лавы были обнаружены и бесцветные прозрачные изометричные кристаллы бьякеллаита, достигающие в поперечнике 1 см. Большой размер элементарной ячейки и плохое качество монокристалла сильно затруднили наше исследование его кристаллической структуры [28]. В целом в элементарной ячейке бьякеллаита удалось локализовать 325 независимых кристаллографических позиций.

Этот супервеликан характеризуется 30-слойной упаковкой шестичленных колец, которые чередуются с последовательностью АВСАВСАСА-СВАСВАСВСАСВАСВАВС. В каркасе минерала установлено неупорядоченное распределение Si и Al по тетраэдрическим позициям. Алюмокремнекислородный каркас состоит из тех же четырех типов пустот, что и сакрофанит — шесть канкринитовых, 20 содалитовых, три быстритовых и одна лиоттитовая, но чередуются они по другим законам. Чередование этих мелких и средних по размеру пустот (а также одной более крупной — лиоттитовой) в колонках вокруг осей имеет вид: по оси [2/3 1/3 z] — SCSSBSSLS, по оси [1/3 2/3 z] — SSSSBSSCSS и по оси [00z] - SBSSCCSSCCS. Позиции внутрикаркасных атомов расщеплены и заполнены статистически. Шестичленные кольца канкринитовых полостей центрируются атомами Са, а в середине полостей находятся молекулы воды, которые образуют непрерывные цепочки типа -Ca-H₂O-Ca-H₂O-. Атомы хлора содержатся в трех содалитовых пустотах. Сульфатные группы заселяют все пустоты (кроме канкринитовых): лиоттитовая содержит три SO₄-группы, быстритовая две, а содалитовая — одну.

Мы предположили, что неупорядоченность Siи Al-тетраэдров каркаса и внутрикаркасного заполнения катионами в структуре бьякеллаита может быть связана с быстрым охлаждением лавы.

Фантаппиит, состоящий из 33 слоев, также найден в вулканических породах Италии в виде прозрачных бесцветных кристаллов до 0.7 мм в длину, в ассоциации с санидином, плагиоклазом, биотитом, клинопироксеном, андрадитом и оксидами железа. Он назван в честь итальянского геолога, исследователя вулканических пород А.Л.Фантаппи. Структура этого минерала описывается последовательностью слоев ACBACABACBACBACBACBACBABCB-ACB, которая формирует лиоттитовые, содалитовые и канкринитовые полости, чередующиеся вдоль оси *с*. Сульфатные группы совместно с Na, K и Ca занимают лиоттитовые пустоты, а сильно разупорядоченные сульфатные группы — содалитовые. Молекулы воды находятся в канкринитовых полостях, соединяя Na- и Ca-катионы [29].

Каркас фантаппиита может быть сформирован из содалитовых пустот путем внедрения сдвинутого блока из 10 слоев. Структуру этого минерала можно рассматривать и как францинитовую, в которой блок, состоящий из 11 слоев, сдвинут на (1/3 2/3 0) вдоль [001]. Всего в ячейке содержатся три блока из 11 слоев, сдвинутых относительно друг друга [29].

Фантаппиит — первый минерал, в котором есть дополнительные слои и *с*-параметр не кратен пяти, а четность слоев не кратна двум (~33 вместо ~32 или ~34).

Колонки вокруг осей [1/3 2/3 z] и [2/3 1/3 z] в структуре бьякеллаита, чередование колонок снизу вверх (a) и схематическое изображение каркаса в структуре фантаппиита (δ).

Кирхерит — 36-слойный минерал — найден в виде бесцветных прозрачных до 3 мм в длину кристаллов в вулканических породах долины Бьякелла, в ассоциации с содалитом, биотитом, оксидами железа, титанитом, флюоритом и минералами группы пирохлора. Он назван в честь немецкого ученого XVII в. А.Кирхера — геолога, минералога и вулканолога, который коллекционировал не только египетские мумии, но и минералы.

И на сегодняшний день это самый сложный из группы канкринита минерал [30]. Последовательность укладки слоев в его структуре вдоль оси *с ACABCABCABCACBCABCABCABCABCABCAB CAB* формирует шесть канкринитовых, 24 содалитовых и шесть быстритовых пустот. В канкринитовых полостях находятся только H₂O и Na, а (SO₄)-группы вместе с CO₃, H₂O, Cl и F занимают лосодовые и содалитовые пустоты. Лосодовые пустоты содержат по две SO₄-группы, ориентированные в противоположные стороны.

Каркас структуры кирхерита.

А сколько их еще?

Группа канкринита сейчас включает около 30 минералов, в которых *с*-параметр ячейки изменяется от ~5 до 95 Å, что соответствует количеству слоев от двух в канкрините до 36 в кирхерите. Из них 20 минералов — многослойные. А сколько же их может быть еще? Наш анализ показал разнообразие в строении и в составе этих соединений. Семейство многослойных канкринитов может пополниться как за счет новых комбинаций пустот в структурах, так и за счет их заполнения различными катионами и анионами.

С учетом открытых нами трех новых типов пустот на сегодняшний день известен весь набор строительных блоков, из которых могут формироваться многочисленные структуры. Но образование фаз с большими ячейками вызывает вопросы, связанные с их стабильностью. Необычность семейства канкринитов в том, что у его представителей ячейка имеет форму параллелепипеда с высотой, которая может превышать размер ребра основания более чем в семь раз (например, в кирхерите). При такой вытянутости структура становится неустойчивой. В работе Е.Бонакорси с коллегами обсуждается вопрос стабильности многослойных представителей этой группы [26]. Авторы статьи пришли к выводу, что поскольку минералы с различной последовательностью слоев встречаются в одном парагенезисе, часто — в одном образце, а иногда — и в одном кристалле, то вряд ли температура или давление могут быть причиной стабилизации одних по сравнению с другими. Вместе с тем степень стабильности сказывается на качестве дифракционного эксперимента от монокристалла (хотя и большой объем ячеек сам по себе уже неблагоприятный фактор для рентгеноструктурного анализа). Это часто затрудняет изучение структуры многослойных канкринитов, и нередко приходится говорить лишь о модели, иногда весьма приближенной к истинной.

По-видимому, устойчивость минералов с ячейками высотой более 100 Å маловероятна. Что касается шести неизвестных минералов (см. табл.) с параметром *с* в пределах примерно 53–69, 85 и 90 Å и с количеством слоев 20, 22, 24, 26, 32 и 34, то с уверенностью можно предположить, что они будут найдены. Это дело времени, хотя обнаружить подобные кристаллы не так-то просто. И у великанов и коротышек они «на одно лицо» — призматические, бесцветные, прозрачные, размером от 0.5 мм до 2 см — независимо от величины элементарной ячейки и пустот, из которых они построены.

Канкринитовые полости присутствуют во всех минералах этой группы, образуя колонки или че-

редуясь с другими полостями. Лиоттитовая пустота, найденная в лиоттите, была обнаружена в структурах половины представителей многослойных канкринитоподобных минералов: афганите, аллориите, тунките, маринеллите, фарнезеите, 18-слойной фазе, бьякеллаите, сакрофаните и фантаппитиите. Близкие по размеру содалитовая и быстритовая пустоты встречаются немного реже, а джузеппеттитовая, кроме джузеппеттита, найдена только во францините. При этом у всех возможны полиморфные модификации, ведь одни и те же «кирпичики» можно комбинировать для создания нескольких построек одного размера (как в тунките и в маринеллите или во францините и в его модификации). А при одинаковых наборах полостей могут получиться разные по размеру и типу строения, как в сакрофаните и бьякеллаите. К тому же при одной и той же структуре с одинаковым набором пустот возможно различное их заполнение, как, например, в афганите и аллориите.

Вот и получается, что впереди еще много открытий и это семейство будет пополняться новыми представителями, в том числе и супервеликанами.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН в части сбора материалов по канкринитовым минералам и Российского фонда фундаментальных исследований (проект 18-29-12005) в части сравнительного анализа многослойных минералов группы канкринита.

Литература / References

- Расцветаева Р.К., Победимская Е.А., Терентьева Л.Е. Структурные особенности афганита и его место среди минералов группы канкринита. Кристаллография. 1993; 38(2): 94–103. [Rastsvetaeva R.K., Pobedimskaya E.A., Terentieva L.E. Structure features of afganite and its place among cancrinite group minerals. Cryst. Repts. 1993; 38(2): 94–103.]
- Ballirano P., Maras A., Buseck P.R. Crystal chemistry and IR spectroscopy of Cl- and SO₄-bearing cancrinite-like minerals. Am. Miner. 1996; 81: 1003–1012.
- Bonaccorsi E., Merlino S. Modular microporous minerals: Cancrinite-Davyne group and C-S-H Phases. Reviews in Mineralogy and Geochemistry. 2005; 57: 241–290.
- Хомяков А.П., Победимская Е.А., Надежина Т.Н. и др. Структурная минералогия высококремнистого канкринита. Вестник МГУ. Сер. Геология. 1991; 5: 79–84. [Khomyakov A.P., Pobedimskaya E.A., Nadezhina T.N. et al. Structure mineralogy of highsilician cankrinite. Vestnik MGU, Geology. 1991; 5: 79–84. (In Russ.).]
- Надежина Т.Н., Расцветаева Р.К., Победимская Е.А., Хомяков А.П. Особенности кристаллической структуры природного гидроксилсодержащего канкринита. Кристаллография. 1991; 36(3): 591–595. [Nadezhina T.N., Rastsvetaeva R.K., Pobedimskaya E.A., Khomyakov A.P. Crystal structure features of natural hydroxyl-containing cancrinite. Cryst. Repts. 1991; 36(3): 591–595.]
- Победимская Е.А., Терентьева Л.Е., Сапожников А.Н. и др. Кристаллическая структура быстрита. Докл. АН СССР. 1991; 319(4): 873–878. [Pobedimskaya E.A., Terentieva L.E., Sapozhnikov A.N. et al. Crystal structure of bystrite. Doklady AN SSSR. 1991; 319: 873–878.]
- Khomyakov A.P., Cómara F., Sokolova E. Carbobystrite, Na₅[Al₆Si₆O₂₄](CO₃)·4H₂O, a new cancrinite-group mineral species from the Khibina alkaline massif, Kola peninsula, Russia: description and crystal structure. Canadian Mineralogist. 2010; 48: 291–300.
- Sapozhnikov A.N., Kaneva E.V., Suvorova L.E. et al. Sulfhydrylbystrite, Na₅K₂Ca[Al₆Si₆O₂₄](S₅)(SH), a new mineral with the LOS framework, and re-interpretation of bystrite: cancrinite-group minerals with novel extra-framework anions. Miner. Mag. 2017; 81(2): 383–402.
- 9. Sieber W., Meier W.M. Formation and properties of Losod, a new sodium zeolite. Helv. Chim. Acta. 1974; 57(168–169): 1533–1549.
- 10. Merlino S., Orlandi P. Liottite a new mineral of the cancrinite-davyne group. Amer. Miner. 1977; 62(3-4): 321-326.
- Победимская Е.А., Расцветаева Р.К., Терентьева Л.Е., Сапожников А.Н. Кристаллическая структура афганита. Докл. АН СССР. 1991; 320(4): 882–886. [Pobedimskaya E.A., Rastsvetaeva R.K., Terentieva L.E., Sapozhnikov A.N. Crystal structure of afganite. Doklady AN SSSR. 1991; 320(4): 882–886. [In Russ.).]
- 12. Ballirano P., Bonaccorsi E., Maras A., Merlino S. Crystal structure of afganite, the eight-layer member of the cancrinite-group: evidence for long-range Si, Al ordering. Eur. J. Mineral. 1997; 9(1): 21–30.
- Расцветаева Р.К., Иванова А.Г., Чуканов Н.В., Верин И.А. Кристаллическая структура аллориита. Докл. АН. 2007; 415(2): 242–246. [Rastsvetaeva R.K., Ivanova A.G., Chukanov N.V., Verin I.A. Crystal structure of alloriite. Doklady AN. 2007; 415(2): 242–246. (In Russ.).]
- 14. Чуканов Н.В., Расцветаева Р.К., Пеков И.В., Задов А.Е. Аллориит Na₃K_{1.5}Ca(Si₆Al₆O₂₄)(SO₄)(OH)_{0.5}·H₂O новый минерал группы канкринита. Записки РМО. 2007; 136(1): 86–90. [*Chukanov N.V., Rastsvetaeva R.K., Pekov I.V., Zadov A.E.* Alloriite Na₃K_{1.5}Ca(Si₆Al₆O₂₄)(SO₄)(OH)_{0.5}·H₂O a new mineral of the cancrinite group. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral, Soc.). 2008; 136(1): 86–90. [In Russ.).]

- 15. Merlino S., Orlandi P. Franzinite, a new mineral from Pitigliano (Italy). Neues Jahrb. Mineral Monatsh. 1977; 4: 163–167.
- 16. *Ballirano P., Bonaccorsi E., Maras A., Merlino S.* The crystal structure of franzinite, the ten-layer mineral of the cancrinite-group. Can. Mineral. 2000; 38(4): 657–668.
- 17. *Расцветаева Р.К., Чуканов Н.В., Иванова А.Г.* Кристаллическая структура аналога францинита нового фельдшпатоида группы канкринита. Кристаллография. 2009; 54(2): 223–230. [*Rastsvetaeva R.K., Chukanov N.V., Ivanova A.G.* The crystal structure of franzinite analog a new feldspatoid of the cancrinite group. Cryst. Repts. 2009; 54(2): 195–202. (In Russ.).]
- 18. *Mazzi P., Tadini C.* Giuseppettite a new mineral from Sacrofano (Italy) related to the cancrinite group. Neues Jahrb. Mineral Monatsh. 1981; (3):103–110.
- Иванов В.Г., Сапожников А.Н., Пискунова Л.Ф., Кашаев А.А. Тункит (Na,Ca,K)₈[Al₆Si₆O₂₄] (SO₄)₂Cl·H₂O новый канкринитоподобный минерал. Записки ВМО. 1992; CXXI(2): 9592. [Ivanov V.G., Sapozhnikov A.N., Piskunova L.F., Kashaev A.A. Tunkite (Na,Ca,K)₈[Al₆Si₆O₂₄] (SO₄)₂Cl·H₂O – a new cancrinitelike mineral. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral. Soc.). 2008; 121(2): 9592. [In Russ.).]
- 20. *Розенберг К.А., Сапожников А.Н., Расцветаева Р.К. и др.* Кристаллическая структура нового представителя группы канкринита с 12-слойной упаковкой тетраэдрических колец. Кристаллография. 2004; 49(4): 714–721. [*Rozenberg K.A., Sapozhnikov A.N., Rastsvetaeva R.K. et al.* Crystal structure of a new representative of the cancrinite group with 12-layer stacking sequence of tetrahedral rings. Cryst. Repts. 2004; 49(4): 635–642.]
- 21. Bonaccorsi E., Orlandi P. Marinellite, a new feldspathoid of the cancrinite-sodalite group. Eur. J. Mineral. 2003; 15(6): 1019–1027.
- 22. *Cámara F., Bellatreccia F., della Ventura G., Mottana A.* Farneseite, a new mineral of the cancrinite sodalite group with a 14-layer stacking sequence: occurrence and crystal structure. Eur. J. Mineral. 2005; 17: 839–846.
- 23. *Bonaccorsi E.* The crystal structure of giuseppettite, the 16-layer member of the cancrinite sodalite group. Microporous and Mesoporous Materials. 2004; 73: 129–136.
- Bonaccorsi E., Nazzareni S. Crystal chemical models for the cancrinite-sodalite supergroup: the structure of a new 18-layer phase.
 Z. Kristallogr. 2015; 230(5): 345–351.
- 25. *Burragato F., Parodi G.C., Zanazzi P.F.* Sacrofanite: a new mineral of the cancrinite group. Neues Jahrb. Mineral Abh. 1980; 140(1): 102–110.
- 26. *Bonaccorsi E., Ballirano P., Cámara F.* The crystal structure of sacrofanite, the 74 Å phase of the cancrinite sodalite supergroup. Microporous and Mesoporous Materials. 2012; 147: 318–326.
- 27. Чуканов Н.В., Расцветаева Р.К., Пеков И.В. и др. Бъякеллаит (Na,Ca,K)₈[Si₆Al₆O₂₄](SO₄)₂(OH)_{0.5}·H₂O новый минерал группы канкринита. Записки РМО. 2008; 137(3): 57–66. [*Chukanov N.V., Rastsvetaeva R.K., Pekov I.V. et al.* Biacellaite (Na,Ca,K)₈[Si₆Al₆O₂₄](SO₄)₂(OH)_{0.5}·H₂O a new mineral of the cancrinite group. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral. Soc.). 2008; 137(3): 57–66. (In Russ.).]
- Расцветаева Р.К., Чуканов Н.В. Модель кристаллической структуры бьякеллаита нового 30-слойного члена группы канкринита. Кристаллография. 2008; 53(6): 1014–1021. [Rastsvetaeva R.K., Chukanov N.V. Model of the crystal structure of biakellaite as new a 30-layer member of the cancrinite group. Cryst. Repts. 2008; 53(6): 981–988.]
- 29. *Cámara F., Bellatreccia F., della Ventura G.et al.* Fantappi*i*/ite, a new mineral of the cancrinite-sodalite group with a 33-layer stacking sequence: occurrence and crystal structure. American Mineralogist. 2010; 95: 472–480.
- 30. *Cámara F., Bellatreccia F, Ventura G. et al.* Kircherite, a new mineral of the cancrinite-sodalite group with a 36-layer stacking sequence: occurrence and crystal structure. American Mineralogist. 2012; 97: 1494–1504.

Giants in the World of Minerals: Multilayer Representatives of the Cancrinite Group

R.K.Rastsvetaeva¹, S.M.Aksenov¹ ¹Shubnikov Institute of Crystallography, RAS (Moscow, Russia)

Minerals of the cancrinite group are aluminosilicates similar to zeolites. In their structures of Si- and Al-tetrahedra combined in six-membered rings there are cavities, occupied by cations Na, K, Ca, anions Cl, F, anionic groups SO₄, CO₃, SO₃, Sn, PO₄, C2O₄, CO₂, and water molecules. Minerals of this group are interesting because of their adsorption and ion-exchange properties. Correlations of the chemical compositions and the structures of aluminum-silicon-oxygen skeletons found in the cancrinite-type compounds may be useful for the direct synthesis of zeolite-like materials. Cancrinite group nowadays includes about 30 minerals with *c*-parameters varying from ~5 to 95 Å, which correspond to different number of layers, varying from two in cancrinite to 36 in kircherite. Twenty minerals of this group are multilayer minerals. In this paper crystal-chemical and genetic peculiarities of multilayer minerals are considered.

Keywords: cancrinite group, multilayer mineral, structure, cavities in framework.